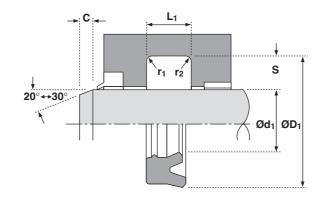


Design

The Hallite 605 is an asymmetric seal offering superlative dry rod sealing for light and medium duty applications.

The 605 has become an industry standard seal worldwide owing to its twin lip profile and consistent performance.

Manufactured in Hythane® – 181, the Hallite 605 is an extremely flexible seal making installation very easy.


The ranges cover most standard housings used in Europe, North America and Asia.

NB: Part numbers commencing 46 or suffixed by "†" are designed to suit popular Asian housings.

Part numbers suffixed by "‡" indicate housing sizes to meet ISO5597.

Features

- Twin lip design offering: lower friction, improved sealing, primary lip protection, increased seal stability
- · Easy installation

Technical details

Operating conditions

Maximum Speed Temperature Range Maximum Pressure

Maximum extrusion gap

Pressure bar Maximum Gap mm Pressure p.s.i. Maximum Gap in

Surface roughness

Dynamic Sealing Face $\emptyset d_1$ Static Sealing Face $\emptyset D_1$ Static Housing Faces L_1

Chamfers & Radii

Groove Section \leq S mm Min Chamfer C mm Max Fillet Rad r_1 mm Max Fillet Rad r_2 mm Groove Section \leq S in Min Chamfer C in Max Fillet Rad r_1 in Max Fillet Rad r_2 in

Tolerances

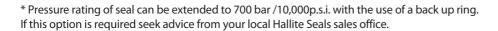
Metric

1.0 m/sec -45°C +110°C 400 bar*

Inch

3.0 ft/sec -50°F +230°F 6000 p.s.i.*

Figures show the maximum permissible gap all on one side using minimum rod Ø and maximum clearance Ø. 160 250 400


100					
0.6		0.5	0.4		
2400	3750		600	00	
0.024	0.020		0.0	16	
μmRa	μmRt		μin	ICLA	μinRMS
0.1 < > 0.4	4 max		4 <	> 16	5 < > 18
1.6 max	10 max		63	max	70 max
3.2 max	16 max		125	5 max	140 max
4.0	5.0	7.5	10.0	12.5	15.0
3.0	3.5	5.0	6.5	7.0	8.0
0.2	0.4	0.8	0.8	1.2	1.6
0.4	0.8	1.2	1.2	1.6	2.4
0.125	0.187	0.250	0.31	2 0.375	0.500
0.093	0.093	0.125	0.15	6 0.187	0.217
0.008	0.008	0.016	0.03	2 0.032	0.032
0.016	0.016	0.032	0.04	7 0.047	0.047

 $L_1 mm$

+0.25 -0

L₁ in

+0.010 -0

Ød₁

 $ØD_1$

Js11

